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1. Introduction. Integrals of the form 

( 1.1 ) I1(m, v) = f e xtJ(yt)J,(bt)tm dt 

and 

(1.2) 12(m, v) = f e xJv(yt)J^(bt)tm+l dt 

occur in various problems of potential theory, hydrodynamics, and elasticity (A. 
Weinstein [1, 2], H. Bateman [3, p. 417], and A. G. Webster [4, p. 367-375]). In [1]- 
[4], v is an integer, x, y, and b are real, and m is a positive or negative integer, or 
zero, such that (1.1) and (1.2) converge. When v is an integer, special cases of (1.1) 
and (1.2) have often been expressed in the literature in terms of elliptic integrals, 
the modulus of which is an elementary algebraic function of x, y, and b. The object 
of the present paper is to obtain closed expressions for Ii(in, v) in termlis of known 
functions, assuming that v is complex when mn ? 0, and an integer when mn < 0, 
and to find recurrence relations involving Ii(m, v) and I2(mn, v). It is assumed 
throughout that x, y, and b are complex. When mt > 0, Ii(rn, v) is evaluated in 
closed form in terms of associated Legendre functions of the second kind of the form 
QV_1/2(z); when m < 0 and v is an integer, it is expressed in terms of associated 
Legendre functions of the form P-m(z), and Appell's generalized hypergeometric 
function F1. By means of either the recurrence relations in Section 4, or certain 
differentiation formulas, explicit expressions of the saine form as in Sections 2 and 3 
can also be obtained for 12(M, v). When v is an integer, these explicit expressions 
for I,(m, v) and 12(m, v) can be obtained in terms of standard elliptic integrals by 
means of well-known reduction formulas. 

The more general integral 
00 

(1.3) I(,, v; A) = f eCtJ,(at)Jv(bt)tX dt 

has been treated by G. Eason, B. Noble, and I. N. Sneddon [5] when A, v, and X are 
integers such that (1.3) converges, and a, b, anid c are real. A summary of [5] is given 
by Y. L. Luke [6, p. 314]. The results of [5] can be used for the calculation of (1.3) 
in terms of elliptic integrals for all integers A, v, and X, X < 1, for which it converges. 
However, explicit expressions are given in [5] only when (1.3) is of the form of 
certain special cases of (1.1) and (1.2). The calculation of (1.3) for other values of 
A), v, and X can be carried out by use of recurrence relations obtained in [5]. The three 
recurrence relations obtained in Section 4 of the present paper are seen not to be 
special cases of the recurrence relations in [5]. 
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When v is an integer, and either m > 0 or b = y, (1.1) and (1.2) can be ex- 
pressed in terms of complete elliptic integrals of the first and second kinds. When 
m)n < 0 and b = y, complete elliptic integrals of the third kind occur also. Examples 
of the latter can be obtained from results of several authors (W. M. Hicks [7, p. 628], 
G. i\I. M\inchin [8, p. 354], A. Van Tuyl [9], M. R. Shura-Bura [10], M. A. Sadowsky 
and E. Sternberg [11], G. E. Pringle [12, p. 385 and 392], and H. E. Fettis [13]). 
In [7], [8], and [11], integrals of the form of (1.1) or (1.2) are not considered ex- 
plicitly. A quantity known to be proportional to I2 ( -1, 1) is evaluated in terms of 
elliptic integrals in [7] and [8], and quantities proportional to I,( - 1, 1), I2 ( - 1, 1), 
and I2(-2, 1) are evaluated in [11]. The evaluatioll of I2(-1, 1) and I2(-2, 1) 
by numerical integration has been discussed by G. P. Weeg [14]. 

For convergence of (1.1) and (1.2) at the lower limit, it is necessary to have 
Re (2v + in + 1) > 0, and for convergence at the upper limit, all four quantities 
Re (x ? ib i iy) must be either positive or zero. In the latter case, we must also 
have either in < 1 or m < 0, depending on the values of x, b, and y. When 
Re (2v + m- + 1) > 0 and Re (x i ib ? iy) > 0, it is easily shown that (1.1) and 
(1.2) are analytic functions of each of the variables x, y, and b, and that differen- 
tiations of (1.1) and (1.2) with respect to x, y, and b can be carried out under the 
integral sign. 

Defining 

(1.4) 0(X, Y) Y 1'2(ri -1 ) 

(1.5) ,6(x, y) = -yI1(jnt, v), 

it is seen that ?(x, y) and i/(x, y) satisfy the differential equations 

(1.6) y2v1 ax -a, 

(1.7) _a 

Despite the fact that v may be complex, it is convenient, following A. Weinstein 
[15], to call ?(x, y) a generalized axially symmetric potential in 2v + 1 dimensions, 
and ,6(x, y) its associated stream function. The analogy with the case when v is an 
integer has proven fruitful. Similarly, writing 

( 1.8) +(x, b) = b-I1(m, v), 

(1.9) 1<x, b) = -bv+lJ2(m, v + 1), 

we have 

( 1.10) b2v+1 a(- a; 

(1-1t) 6~~~~~~~2v+18 (90 

ay ax 

In [11--14], integrals Ij(mn, n) and I2(m, n) arise from the solution of special cases of 
these eqjuations. 
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We note that 12(m, v) can be calculated in terms of Irn, v) by means of the 
relations 

(1.12) 2(M) V) = [vl( * v)] 

(1.13) = -bv-l 2 [blv11(rni,v-1)]. 

Thus, explicit expressions for I2(mn, v), rn > 0, and I2(m, n), in < 0, can be ob- 
tained from the results of Sections 2 and 3 respectively. Alternatively, we can calcu- 
late 12(M, v) in terms of Ii (m, v) by means of one of the recurrence relations in 
Section 4. 

2. Evaluation of Ij(m, v) for mn ? 0. From Watson [16, p. 389], equation (1), we 
have 

i( )= (by)vTr(2v + m + 1) 
i(rn, V') = 7rx 2v+m+lr(2v + 1) 

fF2v +m +1 2v +m +2 pX 2p (21 F 2 '2 + ; v si 1;- +Jn?n 2 d1 

where F(a, b; c; z) is the hypergeometric function, and p2 = b2 + y2 - 2by cos 4. 
Equation (2.1) holds for the same values of the parameters for which (1.1) and 
(1.2) converge. From [6, p. 75], it follows that it is sufficient to assume that 
arg b I _ r/2 and I arg y I < r/2. It is assumed in (2.1) that I arg (1 + p2/x2) I < 

7r, and that arg (sin2 0) = 0. 
Setting b = c + n + E in [17, p. 109], equation (3), where n > 0 is an integer, 

and where c and a - c - n are not negative integers, and letting E -* 0, we obtain 

F(a, c + n; c; z) = r(c)r(c - a + n) (1- aZ)a 

F (a, -n; a-c-n + 1; 1 

when I arg (1 - z) I < r. Hence, noting that the preceding conditions are satisfied 
in each case, we have 

F (2v + m + 1 2v + m + 2 + 1 

(2.3) I=(v r(v + 1)r() (1 - vr12 

(v+ r + 1)(-! - r) 

*F v + r + -1 - r;-;1 ) m-2r, 

= r(v + 1)r(-1) 
r(1 

_z)vr-32 
((z+ + 1)T(-I - r) 

(2.4)2 
v + r+ ' ; 2; 13-z) + 

2 2' 1 - in = r+1 
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r = 0, 1, .., I arg (1 - z) I < ir. From the preceding, using Legendre's duplica- 
tion formula for F(z), we obtain 

(-l)r 2 r-X'-112 I + 2 
1i(2r, v) 

2 1 2 ( +4 
(2,5) .,?ir(by)r+l /iQ(v + 1) 

r~= Y r P(v + 1 ) \2by/ ( ) , (_l)i r) r(V +(-I 2+i)( I(r} + i v) 

and 

11(2r + 1, >) (-I= 2r-v-1/r(r + )x 
(2.6) r~~~~~.r(by) r+aI2r(p, + ~ 

r tN( +r-3 + i) ( 2 \ 

r(V + ir I b) I + 1 + i v), 

r 0,1, * , where 

0 #7 'r Sin~~~~~~~~~~*2v 0d 

(2.7) I(m, ~') (3 - cos Op)rn+v+12' 

with 

x2 + b2 ? y 2 
(2.8) 2by 

We see that (2.7) is an analytic function of A when the d-plane is cut along the real 
axis from 1 to -oo. In order for (2.5) and (2.6) to be real when all parameters are 
real and positive, we must then have I arg (3 - cos 0) I < r in (2.7). The cut 
,B-plane is more extensive than the region in which (2.1) converges, hence, (2.5) 
and (2.6) give an analytic continuation of (2.1). 

Substituting cos 4 =t in (2.7) and comparing with Hobson [18, p. 195], equation 
(20), we obtain 

m f/2 r( v + 2 (2 -/ 
(2.9) I(m,v) (-1)m 2 (V+ m +4) -V-1/2) 

throughout the cut p3-plane, where Qab(Z) is the associated Legenldre function of the 
second kind, and where I arg (d - 1) I < r, I arg (,B + 1) 1 < r. We note that the 
conditions arg (sin2 0) - 0 and I arg (o - cos 0) K< r which hold in (2.7) are 
required in the preceding reference. Finally, from (2.5), (2.6), and (2.9), we have 

(2.10) I1(2r, v) =2r(b)y+1/2) E (j) 
__ I 

1 
)(2by 

- 

) _ 1)ri)2Q) (1/23) 

and 

II(2r + 1, ) 2 (r + r) 

(2.11) ~~~~~~7r(by)r+3/2 
(2.11) r 1 / x2 )-(r++1)'2 r 

where ,BQ -a1/2 ts i=o P(~ + i) 2byj 

where fi satisfies the preceding conditions, and r == 0, 1,.. 
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The result 

(b)v 
. 
i2 0v( 

(2.12) ,i(Ol v) 1r J (x2 + b2 + y2 - 2by cos 4)Y+1/2 

was obtained by A. Weinstein ([15], equations (9) and (12)), and the expression 

(2.13) I1(O, ) = X Qv 1/2(A) 

was obtained by Watson ([16, p. 389], equation (2)). 
When v is an integer n, n > 0, we can express I(m, v), and hence, Q -1/2(03), in 

terms of complete elliptic integrals of the first and second kinds. Substituting 
cos = 2sn2u - 1 in (2.7) when v = n, where the modulus, k, of sn u is given by 

(2.14) k2 
2 -2 - 4by 
1 + ? x2 + (b + y)2' 

we obtain 

(2.15) I(m 2nm+1/22n+2+lK sn 2nucn2u du (2.15) I(m, n) - 2 k 
1o dn2m+2nu 

From (2.14), it follows that the cut in the ,3-plane from 1 to -oo corresponds to 
cuts in the k2-plane from 1 to co and from 0 to along the real axis. Concerning 
the path of integration in (2.15), it is known that the residues of the integrand are 
zero at all of its poles. Hence, it follows that (2.15) is independent of the patlh of 
integration joining the points 0 and K. In particular, we can always take the latter 
to be the straight line between 0 and K. 

The right side of (2.15) can be evaluated in terms of elliptic integrals by means 
of well-known reduction formulas (P. F. Byrd and M. D. Friedman [19, p. 191- 
198]). Alternatively, we can compute Qn-1/2(0) for m ? 0 and n > 0 by use of the 
recurrence relations for Qv(z) ([18, p. 290], equations (164) and (166)), starting 
from the values of Q-1/2(1), Q1/2(1), Q11/2(1), and Q1/2(0). From (2.9) and (2.15), 
referring to [19], we have 

(2.16) Q-1/2(13) = 1 

(2.17) Q1/2(13) = 
2 

(K - E) - kK, 

(2.18) QI1/2(0) = - E 

and 

1 2 
(2.19) Q1/2(13) = 2kk'3 [2'2K - (2 - k2 )El, 

where K anid E are the complete elliptic integrals of the first and second kinds, 
respectively, and ki2 = 1 - k2. Both k and k' are single valued when the k2-plane 
is cut from 0 to - cc and from 1 to co. Another method for the computation of 
Qin a2(1) in terms of elliptic integrals can be obtained from [7], Sections II and III. 

Finally, we note that I1(0, n) and I1(1, n) satisfy simple recurrence relations. 
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From (2.11), we have 

(2.20) Ii(1, n) =- 1(by) _2 (32 n-12(0) 

From (2.13), (2.22), and (2.16), we obtain the recurrence relations 

(2.21) (n + 2)I1(O, n + 1) - 2n3I1(O, n) + (n - 2)I,(O, n - 1) = 0 

and 

(2.22) (n - 1)Ij(1, n + 1) - 2nfIl3(l, n) + (n + )Ij(1, n - 1) = 0. 
Expressions for Ij(O, 0), Ij(O, 1), I(1, 0), and Ij(1, 1) in terms of elliptic integrals 
ollow from (2.13), (2.20), and equations (2.16) through (2.19). 

3. Evaluation of Ii(m, n) for m < 0. From [17, p. 105 and 107], equations (1), 
(10), (18), and (37), we have the relation 

(Z)b-c(1 - Z)a-bF(l - b, c - b; a + 1 - b; l/z) 

(3 _1) 
r(l - c)(a + 1 -b) F(a b. c z) _ (c)r(l - c)P(a + 1 - b) 

(3.1) P(l - b)r(a + 1 - c) a ; ; ) (2 - c)ir(c - b)IF(a) 
ei1r(C-1)z-( 1 - 

aZ)c-abF(j - a, 1 -b; 2 - c; z) 

when Im z > 0. Substituting a r-n + 2+ b = r-n, and c ==1-n + , 
n > r > 1 E > 0, and letting E 0, we obtain 

F (n-r + -, n - r + 1; n + 1; z) 

r(n + 1)r(r- n + 2) r- (n-r + 1, 1-r; 2; liz) 

(32 (1r r(n + 1)rT(r - n + 1)r(n) 
r(n - r + 1)r(r)r(r + 2) 

Z-n(1 - Z)2r-n-12F(2 -F n + 1,r - n; 1 - z 

Im z > 0. The second hypergeometric function on the right side of (3.2) is of the 
form F(a, -in; -m - 1; z), where m > 0, 1 > 0, and is defined as in [15, p. 101], 
equation (3). We see that it remains a polynomial throughout the limiting process 
E -> 0. Noting that both sides of (3.2) are analytic in the z-plane cut along the real 
axis from 1 to cc, it follows by analytic continuation that (3.2) is valid for 

arg (1-z) I < r. Similarly, setting a =r - n - b = r - n, and c = 1 - 

n + E, n > r ? 1, E > 0, and letting E 0, we have 

F (n-r + 1, n + r + 2; n + 1; z) 

= r(n + 1)r(r -n - 12 r n-r +1,1-r; 2 1/z" 

+ ( _ 1 )T r ( 4 +n 1F) r( + n 1 r; 
- 1 ) (3.3) 

~ ~ ,)rP(n + 1)r(r - n - 1)r'(n) 
r(n - r + 1)r(r)Ir(r -2 

z-n( _- )2r-n-3'2F( r - - r - n; 1 -n;z 
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whenL I arg t1 - z) I < w. Finally> frem (3.2), (3.3), and (2.1). using Legendre's 
duplication formula for P(z) together with the functional equations, we find that 

I-2rn! r-l n-2r (n - + i)! 
7r(2n)! ib)o2 

x 
O (n - 1 - i)!(2i + 1)! 

(3.4) *tbx J(n - r + i + 1,n) + 2 (2n - 2r) (2by)1/2 
\by/ + (2r - I) ! 

E (r-1-K (2x2YK(2r - n, r + i, 
>1=0 (n - r - )O 

and 

Il(1 - 2r, n) = (2) ! (b?21\ 1n-22r f (n - r + ) 
ir(2n)!I>o( 1 - i)!(2i)! 

35) (22x' 2J(n-r + i + 1 n)-22r-n-2 
(2n - 2r + 1)! 

(2by<)-12x 

blj n i1Jj1~ (2x2 (r - 2 n - ,i 

2n 
i==o (n- r - 1) I(2e i +1) '(by- (rn- ) 

r = 1, 2, where 

(3.6) J(n ) 
s sin , 

d4p 
(a - cos4Qm5~ 

and 
ii-q-1/~12 Si2n d 

(377) K( n) o COS 
>) sin d 

(a -cos4O)M 

with 

b2 + y 2 
(3.8) a 2by 

and with f defined as in (2.8). It follows from (3.4) and (3.5) that q may be a 
positive or negative integer, or zero, and that m _ n in (3.6) and (3.7). We see 
that (3.6) and (3.7) are analytic functions of a when the a-plane is cut along the 
real axis from -1 to 1, and that (3.7) is an analytic function of j3 when the p-plane 
is cut from 1 to - In order for K(q, m, n) to be positive wheni a > 1 and 0 > 1, 
we choose I arg (3 -cos 4) I < ir in (3.7). 

Substituting cos 4 = tin (3.6) and comparing with [18, p. 195], equation (20), 
we find that 

(39) J( =) 2 '(n ? -2) (nn+l/2)7ri1 2r_n+ I)n)n2+124> i-2-1/2 (9 J(m, n) (in) e (a --/ 

when the a-plane is cut from 1 to - oc along the real axis, with I arg (a - 1) I < 7r 

and I arg (a + 1) 1 < gr. Using Whipple's relation in (3.9) [18, p. 245], equation 
(92), we obtain 

(3.10) J(m, n) = (2n)! r 2 
- )(n-m)/2P-n 

a 
a ) 
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in the cut a-plane when Re a > 0. With I arg (a -i1) I < 7r and I arg (a + 1) I < 7r 
as before, we see that Re (a/V\/a2 - 1) > 0 both for Re a < 0 and Re a > 0, and 
that the imaginary axis is mapped twice onto the segment 0 _ a/V/a2- 1 < 1 

Writing 

(2nl)Ilrj-mn), (3.11) J(mn, n) =(2")n! J(m* ) 

we can verify that 

(3.12) R nJ(n) = (2 _ )(n-m)/2pn ( a- Rea > 0, 

(3.13) = et / (ai2 ? ( ( > )n xa = ial , al > 0, 

(3.14) ~~= (_I)nf (2 _1(n-m) /2P-n ( az )Reo (3.14) = ~)(a2 - n- Va 2 ) Rea < 0 

when the a-plane is cut along the real axis from -1 to 1, where P-nm(x) is defined 
in the usual way when 0 < x < 1 [18, p. 99]. From (3.10) and [18, p. 100], equation 
(28), we find that 

_(a 2 -1(n-m)I2 n-rn n-m+(a2_w/ 
(3.15) J (mt,n) - ____=_ z n-m?i! a ) 

(a + '\/o;2 _j ln i=o (n-mn-i)!(n +it)!i! 2i (a + \/ce2_ )i 

in the cut plane when Re a > 0, and with n > m and n > 0. Noting that both 
sides of (3.15) are analytic when the a-plane is cut along the real axis from -1 to 
1, it follows by analytic continuation that (3.15) holds throughout the cut a-plane. 
It can be verified that (3.9) through (3.15) remain valid when m < 0, and that 
(3.15) simplifies to 2 n when in = 0. 

Similarly, substituting cos 4 = 2t - 1 in (3.7) and comparing with [17, p. 231], 
equation (5), we have 

K(q, m,n) = (2n)! ( + 
l__-1/2 

(3.16) 2 2n(n !)2 (a ? 1)m 

F, n + 
I q q2n+ 1; 2 4 p F1n 2 ) 2- n 1; + 1 ,+ 1) 

where F1 (a, b, b', c; x, y) is the first of Appell's generalized hypergeometric functions 
of two variables. From (3.4), (3.5), (3.11) and (3.16), we find that 

I,(-2r, n) = -2r( by) r-Ix 

(n (n-r + i)! 1)!Kb) -(n-r +i + 1,n) 
=o (n 1- i)! (2i + 1)! Jy 

+ 2 1(2n - 2r)! (by )r-1/2 n-r (r - 1 + i)! (2x20 
(3.17) (2r - 1)!n! i=o (n- r - i)! (2i)! Tby/ 

( + 1)2r-n-1I2 ( 1 1 
(a + l)r?i F1 2 2 

2 2 
a +1',+1 
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I1(l -2r,n) 

r-1 2 ( 
2r (by )r1 E 

(n - r ! i)! (- J(n-r + i+ 1, n) 
i=o (r -I- i)! (2i)! by/ 

3r-3n-5/2 ~~~n-r /2\ 23r3n5I2(2n - 2r + 1)! (by r-3/2 (r -1 + ) (2x\ 
(3.18) (2r - 2)! n! Y i&o (n-r-i) (2i + 1)k byJ 

(: + l)~ F F ,1 +i,n - 2r+ ,2n+1; 
(a + 1) r+i F 2~ +~2n+1 

2 2 ) r > 1. 

Finally, we consider the evaluation of K(q, m, n) in terms of elliptic integrals. 
Let k2 be given by (2.8), and let 

(3-19) ~~12 = 2 - 4by (3.19) a + 1 (b + y)2 

We see that the cut in the a-plane from -1 to 1 corresponds to a cut in the 12-plane 
along the real axis from I to cc. Substituting cos p = 2sn2u - 1 in (3.7), we have 

(3.20) K(q, m, n) = 22n-m+q+1/212m 
K sn 2u cn 2u dnu du 

k2o-1(1 - 12 sn 2U)m 

When k2 and 12 lie in their cut planes, the path of integration in the u-plane corre- 
sponding to 0 < P _ ir is a simple curve which does not pass through any singu- 
larities of the integrand. For values of k2 and 12 in the cut planes such that k2 # 12, 

k # 0, we see that (3.20) can be expressed in terms of complete elliptic integrals of 
the first, second, and third kinds. When k2 = 12, and hence, x = 0, only complete 
elliptic initegrals of the first and second kinds occur. Finally, when either b or y 

2n 2n th 
vanishes, the integrand reduces to sin u cos u, and the upper limit becomes 7r/2. 

Let 
K 2n 2n 

(3.21) k(m, n) = fK sn2un2u du 
Jo(1 - 12 sn 2U)m 

(3.22) L(m, n) = 
_______d 

Then when q ? 0, we have 

(3.23) K(q, m, n) = i-q (m -) ( ..kR(i,n), 
(12 - k 2)m-q i= - k2 

and when q < 0, we find on expanding dU2U I_12 sn2u)-m in partial fractions that 

22n-m+q+1/2k2m-2q+1,2m-2q 

2q 2 
K(q,ien, n) = (12 _-2)- 

(3.24) {-q )M+q+i ( M -m - (I 12k ) L(i n) 

+ E (n2z 2i )Kin)} 
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We see that (3.21) and (3.22) can be expressed in terms of integrals of the forms 
K K 

(3.25) U f (1 - l2sn2u) du, Vn (1 -l2sn2u ) du 

and 

(3.26) U= 1 dn 2u du, Vn dn 2nu du, 

respectively, where n > 0, and the latter can be evaluated by use of well-known 
recurrence relations [19, equations (331.03), (336.03), (314.05) and (315.05)]. 

Substituting q - in (3.20) and letting k tend to zero with 1 fixed, we obtain 
IrI/2 -2n 2n 

(3.27) J(m n) = 22n?m+1t2m sin ucos u du 
j0(1 - 12 sin 2 U)m 

Thus, an alternative method for the evaluation of J(rn, n) is to express (3.27) in 
terms of the integrals 

7r/2 7r/2 

(3.28) gn = | (1 12 i)ndu hn = f (1 12 sin2 u<Thdu, 

and to evaluate the latter by means of recurrence relations obtained from those for 
Un and Vn , respectively. 

4. Recurrence Relations for I1(mn, v) and 12(ni, v). Using the identities 

(4.1) JY(Z) = - Jv(z) -J+1(z) d-z z 
and 

d 
(4.2) -zJY(Z) = J_1(Z) - J(z) dz z 

and assuming the conditions on x, y, and b mentioned earlier, we have 

Y e xJ,-,(bt) [Jv_2(y t) _ (v - 
)iv_l(yt)] tm+' dt 

00 
xt 

- ft e-xttm?lJv-1(bt) - Jv-1(yt) dt, 

(p- 1)Jv-1(bt)- 
b f Je-xJ( yt bt J,(bt) ]tn+ dt 

(4.4) 0 
- f e xttmelJv.i(yt) J^.1(bt) dt, 

and 

b e-xtJv(yt) [J,1( bt ) _J(bt) tm dt 

(4.5) 
-fe- tt"+'Jv(yt) J,(bt) dt. 
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We note that any other limits of integration can be used in the preceding as well 
as 0 and cc. Integrating the right-hand sides of (4.3), (4.4) and (4.5) by parts, 
and using (4.1) in the first two cases and (4.2) in the last, we obtain the relations 

b12(M, v) y12(m, V-1) + (m + 1)Il(M, v - 1) - xI1(M + 1, v - 1) 

(4.6) |~~~~~~~0 Re (2P + m -1) > O 

+ by ( V)'1 
(bY' 2v +i 1 0, 

22v2 [r(v) ]2 ) 

(2v + m )I(i(m, v -1) - b12(M, v) - xll(M + 1, v-1) 

(4.7) JO, e(v+m 1 

=y ext Jv(yt)Jv-1(bt)tm'+l dt ( by )v1 

I 22v2[r(v)]2) 
2v + inm-1 = 0, 

and 

(2v -m- 1)11(M, v) - y12(M, v) + xJI1(M + 1, v) 

(4.8) = b f 
e-CtJ,(yt)Jv-,((bt)tm+l dt, Re(2v + m + 1) > 0, 

respectively. Multiplying (4.7) by b and (4.8) by y and subtracting, we obtain 

(y2 - b2)12(M, v) = (2v - m - 1)yIl(m, v) + xyIi(m + 1, v) 

-(2v + m- 1)bl(m, v - 1) + xbI(m + 1, v - 1) 

(4.9) (0, Re (2v+m-1) >O 

b( by) )v1 

22vl 
2 
[r(V)]2 

2v + m - 1 = 0. 

Finally, from (4.6) and (4.9), we find the recurrence relation 

(2v m + 1)byI,(m, v + 1) = 2v(y 2+ b2)I1(Mn, v) 

-bxyll(in + 1, v + 1) - (2v + m - 1)byli(m, v -1) 

(4.10) (0, Re (2v + m-1) > 0 

+ bxyIl(m + 1, V 1) - (by)v+l 

L22vP(p + 1)]21 2p +im- 1= 0 

for 1Q(m, v) alone. 
It is easily verified that when 11I(m, n) is known for 2n + m = 0, 1, and 2i m< 

-1, and when I(0, n) is known for n > 0, we can obtain 11(m, n) for all other 
values of m < 0 and n ? 0 for which it converges by means of (4.10). We can then 
obtain 12(m, n) from (4.9). Also, when I,((m, 0) and 11(m, 1) are known for m > 0, 
and when I,(O, n) is known for n > 0, we can calculate I(i(m, n) for all other values 
of in > 0 and n > 1 by solving (4.10) for Il(in + 1, n + 1). As before, we can 
then obtain 12(m, n) from (4.9). 
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